Abstract. Species conservation via the Endangered Species Act is highly politicized, yet few data have been gathered to illustrate the relationship of political party affiliation to species conservation perspectives. We conducted a nationwide public opinion survey and found that Democrats value species conservation more highly than do Republicans, and that Democrats are also more strongly supportive of the Endangered Species Act. Republicans place higher value on property rights than do Democrats, but members of both parties value economic growth as highly as wildlife conservation. The results imply that the Democratic propensity to value species conservation reflects a biocentric perspective that does not bode well for practical conservation efforts. Species conservation will depend upon the success of academicians and progressive political leaders in educating students and members of all parties about the fundamental conflict between economic growth and wildlife conservation.

Species conservation is an increasingly contentious issue in American society and politics. Controversy stems from a fundamental conflict between species conservation and economic growth, both of which are goals of the American public and polity. While some have claimed that economic growth and wildlife conservation are reconcilable (Simon and Kahn, 1984; Babbitt, 1998), the ecological principle of “competitive exclusion” is that no species may succeed (i.e., increase in numbers or material well-being) except at the expense of other species (Pianka, 1974). Humans have the technological capacity to exploit all types of ecosystems; therefore, the human economy grows at the competitive exclusion of wildlife in the aggregate (Czech, Krausman, and Devers, 2000). Economic growth ultimately depends on the liquidation of natural capital—erstwhile wildlife habitat—in the same way that growth of the economy of nature is ultimately dependent upon increased primary productivity—i.e., production of plant material via photosynthesis (Fearnside, 1986). There is a mounting body of empirical evidence supporting the theoretical basis for the negative relationship between economic growth and wildlife conservation (Czech and Krausman, 1997; Dobson et al., 1997; Flather, Knowles, and Kendall, 1998; Wilcove et al., 1998; Czech, Krausman, and Devers, 2000).

Congress acknowledged the conflict between economic growth and wildlife conservation in Section 2(a)(1) of the Endangered Species Act (ESA) by declaring that “various species of fish, wildlife, and plants in the United States have been rendered extinct as a consequence of economic growth and development untempered by adequate concern and conservation” (16 U.S.C. §1531-1544). The ESA, signed by President Richard Nixon on December 28, 1973, provides for the designation of threatened and endangered species and the designation of critical habitat. It requires federal agencies to consult with the United States Fish and Wildlife Service on projects having the potential to impact listed species, and prohibits the “take” of federally listed species by all parties subject to the jurisdiction of the United States.
In Section 3 of the act, “take” is defined as “to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct.” This comprehensive definition of take contributed to the reputation of ESA as “the most far-reaching wildlife statute ever adopted by any nation” (Reffalt, 1991:78), a reputation that was enhanced when, in Sweet Home v. Babbitt (11 S.Ct. 714; 1995), the Supreme Court interpreted “harm” (a form of “take”) as including habitat destruction. Because implementation of ESA may affect a landowner’s ability to use his or her land in the most profitable way, it has stirred controversy and is a primary target of the “wise use” and other property rights movements (Ehrlich and Ehrlich, 1996).

American gross domestic product (GDP), a function of population size and per capita consumption, and the foremost measure of economic scale, has increased approximately sevenfold since records were kept by the federal government (United States Bureau of Economic Analysis, 1998). As GDP rises and the human niche expands, more species will become listed as threatened or endangered due to the principle of competitive exclusion. Conflicts between conservation and development interests will intensify unless Americans become less concerned with either economic growth or species conservation (Czech and Krausman, 2001). It is therefore important to understand how Americans value these two goals relative to each other, and how they view related institutions, such as property rights and the Endangered Species Act. If, for example, Americans value species conservation more than economic growth, policymakers should generally favor species conservation measures in the face of pressure from economic interests, and if not, vice versa.

This does not imply that policymakers will automatically act in the interests of the majority, especially when those interests are only suggested via public opinion data. Policymakers are often beholden to special interests groups and party agendas (Cozic, 1996), although party loyalty is not strong in the United States relative to other Western nations (Cover, Pinney, and Serra, 1997). While these variables have a dubious and often undesirable effect on the policymaking behavior of politicians, there is at least one legitimate reason for policymakers to employ public opinion data with caution—citizens may lack an understanding of the relationships between alternative goals. For example, even if Americans indicate that they value species conservation more than economic growth, they would not necessarily sacrifice the latter for the former, and if they did, their attitudes toward conservation might change dramatically. In fact, the question of whether economic growth engenders or erodes a conservation ethic has been a controversial one at least since Aldo Leopold’s A Sand County Almanac was published in 1949, and the prominence of this question is growing with the scale of the human economy (Czech, 2001). Perhaps the public’s relative valuation of conflicting goals should affect the actions of politicians and other policymakers only to the degree that the public understands the relationships among the goals.

This suggests the need for three kinds of information. First, how does the American public value species conservation relative to economic growth, property rights, and related or conflicting concepts such as ecosystem health, availability of resources for posterity, and even democracy? Second, how do Americans feel about specific policies—such as the ESA—that are associated with these abstract concepts? Third, are Americans aware of the basic conflict between economic growth and species conservation? Furthermore, to the extent that the answers to these questions are party-specific, policymakers concerned with representing party members (or, alternatively, with reforming party ideology) will find guidance (Patterson, 1996).

The most comprehensive analysis of attitudes toward wildlife conservation in America was conducted by Kellert (1996). However, most of his observations were based on data obtained in 1978—on the heels of the American environmental movement (Gottlieb, 1993). Since then, American politics has included the Sagebrush Rebellion (Cawley, 1993), the Contract with America (Gingrich et al., 1994), and the “wise use” movement (Lewis, 1995), each of which has had major effects on attitudes toward the Endangered Species Act and the implementation thereof. Furthermore, Kellert did not address the public’s valuation of conservation relative to economic growth and related variables, nor the relationship of political party affiliation to conservation attitudes. Political party membership is often important in defining the opinions of party members on controversial issues, such as environmental protection and conservation (Koenig, 1975; Strand, 1981; Wall, 1995; Czech, Krausman, and Borkhataria, 1998). Although environmental protection in general may be supported by the American public regardless of partisan affiliation (Thiele, 1999), it is unclear whether similar attitudes extend to that aspect of environmentalism concerning the conservation of species.

The purpose of this article is to assess the current relationship between political party affiliation and attitudes toward species conservation in the United States. In particular, we seek to determine if and how party members vary in terms of the value placed on species conservation, economic growth, and property rights. We also seek to assess the relationship of political party with attitudes toward generic forms of conservation and with the Endangered Species Act in particular. Finally, we seek to gauge the relationship between political party affiliation and knowledge of the causes of species endangerment.

Methods of a Nationwide Survey

Survey Administration

We designed a questionnaire to address the objectives and obtained a random sample of 2,500 United States household
addresses drawn from a list of telephone service account holders from Survey Sampling, Inc. (Fairfield, Conn.). Approximately 94.2% of United States households have telephones (Belinfante, 1999). While telephone subscribership is affected by factors such as state of residence, income level, race, age, household size, and employment status, few major subsets of the general populace have less than 90% subscribership. Of subscribers, about 76% have telephone numbers that are listed for public access; therefore, only these parties may be queried in mail surveys (Piekarski, Kaplan, and Prestegaard, 1999). Implications of using telephone listings for sampling the public are discussed in the “Results and Discussion” section.

We selected 100 of the listings uniformly and conducted a pilot study in July 1996 to detect problems with questionnaire design and survey administration. We conducted similar pilot studies in September and November 1996, with each pilot study consisting of 100 sampling units.

We randomly selected 2,000 of the remaining 2,200 listings to take part in the final survey. The survey followed the protocol recommended by Salant and Dillman (1994), and consisted of four steps: (1) an introductory letter mailed on February 24, 1997 that explained the purpose of the survey; (2) a questionnaire mailed three days later; (3) a reminder postcard mailed three days after the questionnaire; and (4) a second questionnaire, identical to the first, mailed nine days after the postcard to those who had not returned the first questionnaire. We enclosed pre-addressed, postage-paid return envelopes with the questionnaires. We did not mail a second questionnaire to those households from which we had received responses by the date of the second questionnaire mailing, and we checked each response to ensure that there were not multiple responses from any individual.

In the introductory letter of the first questionnaire, we asked “that the survey be completed by the adult in your household who had the most recent birthday.” This instruction was designed to obtain a balance of responses from males and females. However, this instruction tends to lower response rate, and we compromised by excluding this instruction in the introductory letter of the second questionnaire.

Questionnaire Components

To address the valuation of species, we defined eight types of species: amphibians, birds, fish, invertebrates, mammals, microorganisms, plants, and reptiles. We asked respondents to indicate the relative importance of these types of species for preservation using visual analog scaling, whereby the respondent indicates relative value by marking a point along a spectrum ranging from 0 (no importance) to 100 (most importance). We defined the variable preservation value as the mean of a respondent’s importance scores across all taxa.

To assess the level of knowledge pertaining to species endangerment, we asked respondents, “Which of the following do you think is the single biggest cause of species endangerment in the United States today?” Respondents selected from four alternatives: (1) hunting, fishing, trapping, and other forms of harvesting; (2) pesticides and other toxic chemicals; (3) habitat loss due to mining, logging, farming, housing development, etc.; (4) foreign species such as Norway rats, European starlings, etc. We used Czech and Krausman’s (1997) analysis of species endangerment causes to derive the relative importance of these causes in actuality.
Statistical Analysis

We used multivariate analysis of variance to measure differences in mean response values among parties while accounting for possible gender effects, because women and men have been shown to differ in attitudes toward wildlife and conservation (Kellert, 1987; gender effects are reported in Czech, Devers, and Krausman, 2001). When significant differences were detected using analysis of variance, we conducted pair-wise comparisons using Student’s t-test to see which parties had mean values that differed significantly. We analyzed categorical data using Pearson’s chi-square to test for differences in response rates for a given answer among parties.

Results and Discussion

Survey Response

Three hundred seventy-three potential respondents were unavailable due to postal delivery problems (such as changes of address), death, or debilitating illness. We received 644 survey responses. The lowest estimate of response rate is therefore 644/(2000-373) = 40%. We obtained responses from all states (Figure 1), and the distribution of respondents closely resembles that of the U.S. population (and therefore, roughly, Congressional delegations). Demographic characteristics of the respondents resemble those of the voting public more than those of the United States population (Table 1).

Many potential mail survey respondents are eliminated from sample populations due to the difficulties that sampling companies have in maintaining a current, thorough, and accurate database. Some people list insufficient addresses with their telephone companies. Others have separate mailing and physical addresses, and list only the latter. Typographical errors occur. Some people change residences. As noted earlier, some households do not have telephones at all, and these households have been shown to have distinctive demographic characteristics (Brick et al., 1995; Keeter, 1995). For example, households in the South are less likely to have telephones, as are households with lower incomes (Giesbrecht, Kulp, and Starer, 1996). However, less than 6% of households do not have telephones, which makes the bias associated with this factor an unlikely source of statistical significance (Belinfante, 1999).

As also noted earlier, some households do not have telephones at all, and these households have been shown to have distinctive demographic characteristics (Brick et al., 1995; Keeter, 1995). For example, households in the South are less likely to have telephones, as are households with lower incomes (Giesbrecht, Kulp, and Starer, 1996). However, less than 6% of households do not have telephones, which makes the bias associated with this factor an unlikely source of statistical significance (Belinfante, 1999).

Even after nonfunctional addresses are documented and eliminated from response rate calculations, response rates for mail surveys tend to be underestimated, because a number of factors prevent surveyors from determining the availability or existence of remaining addressees (Dillman, 1995; Keeter, 1995). For example, households in the South are less likely to have telephones, as are households with lower incomes (Giesbrecht, Kulp, and Starer, 1996). However, less than 6% of households do not have telephones, which makes the bias associated with this factor an unlikely source of statistical significance (Belinfante, 1999).

Even after nonfunctional addresses are documented and eliminated from response rate calculations, response rates for mail surveys tend to be underestimated, because a number of factors prevent surveyors from determining the availability or existence of remaining addressees (Dillman, 1995; Keeter, 1995). For example, households in the South are less likely to have telephones, as are households with lower incomes (Giesbrecht, Kulp, and Starer, 1996). However, less than 6% of households do not have telephones, which makes the bias associated with this factor an unlikely source of statistical significance (Belinfante, 1999).

Table 1. Demographic Features of the General Public, Voting Public, and Survey Respondents

<table>
<thead>
<tr>
<th>Demographic Feature</th>
<th>U.S. Public</th>
<th>U.S. Voters</th>
<th>Survey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age</td>
<td>34.5</td>
<td>46.6</td>
<td>51.6</td>
</tr>
<tr>
<td>% <30 years age</td>
<td>42.9</td>
<td>22</td>
<td>13</td>
</tr>
<tr>
<td>% 30-44 years age</td>
<td>24.5</td>
<td>38</td>
<td>25</td>
</tr>
<tr>
<td>% 45-59 years age</td>
<td>16</td>
<td>24</td>
<td>32</td>
</tr>
<tr>
<td>% >59 years age</td>
<td>16.5</td>
<td>16</td>
<td>30</td>
</tr>
<tr>
<td>% Male</td>
<td>49.1</td>
<td>46</td>
<td>70</td>
</tr>
<tr>
<td>% Urban: rural</td>
<td>75:25</td>
<td>NA</td>
<td>73:27</td>
</tr>
<tr>
<td>% Western*</td>
<td>31.8</td>
<td>31.3</td>
<td>33</td>
</tr>
<tr>
<td>% Eastern*</td>
<td>68.2</td>
<td>68.7</td>
<td>67</td>
</tr>
<tr>
<td>% High school graduates</td>
<td>82</td>
<td>94</td>
<td>99</td>
</tr>
<tr>
<td>% College graduates</td>
<td>23</td>
<td>40</td>
<td>43</td>
</tr>
<tr>
<td>% Democrat</td>
<td>47</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>% Republican</td>
<td>43</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>% Independent</td>
<td>10</td>
<td>27</td>
<td>21</td>
</tr>
<tr>
<td>% Unemployed</td>
<td>5.4</td>
<td>2.1</td>
<td>2</td>
</tr>
</tbody>
</table>

*Western” refers to CA, OR, WA, ID, MT, WY, UT, NV, AZ, NM, CO, ND, SD, TX, OK, KS, AK, and HI. “Eastern” refers to all other states.
1978). For example, we received nine notifications from acquaintances of deceased addressees. Numerous other addresses were probably for deceased people for whom no one felt compelled to respond; likewise for the severely ill. Some mail probably got lost or damaged, unbeknownst to us, and some addresses were probably for non-citizens (only American citizens were asked to respond). In addition, some respondents were no doubt temporarily unavailable due to travel. For these reasons, our reported response rate of 40% should be interpreted as a very conservative (i.e., minimum) estimate.

Because the voting public demands more attention from policymakers than does the public at large, the voting public is of special concern in public policy studies and in electoral politics, which are often strongly partisan (Flanigan and Zingale, 1998). About 69% of the United States was classified as the “voting public” by Barone and Ujifusa (1995), although voter turnout has been declining for several decades (Niemi, Watson, and Weisberg, 2001), and there was only 47.2% turnout in the 1996 presidential election (Doyle, 2000). It therefore seems likely that survey response is also becoming more difficult to obtain, especially for surveys related to public policy issues.

Respondents in this study probably represent a much larger proportion of the voting public than of the general public (Table 1), as expected in surveys pertaining to public policy. Respondents, however, were far more likely to be male than either the United States population or the voting public, despite the aforementioned efforts to obviate this phenomenon. Kellert (1987) found that males were more concerned about conserving wildlife species and habitats than were females. If that still holds, males are predisposed to respond to a survey on endangered species and more likely to consider the topic in electoral decisions. Although our survey results may include a male bias in mathematical terms, they may effectively provide a better approximation of voter values.

Political Party Affiliation

Survey respondents were asked to identify their political party affiliation. Of the respondents, 34.5% identified themselves as Democrats, 31.2% as Republicans, 19.3% as Independents, and 4.9% as Other. Data from the 9.9% of respondents who did not identify their party affiliation were not included in the analysis.

Mean Preservation Value

Differences in mean preservation value attributable to political party affiliation were significant (\(f = 3.5715, p = 0.0150, 3 \text{ df}\)). Democrats and Independents had mean preservation values of 66.66 and 66.24, respectively, significantly higher than the mean preservation value of 58.79 reported by Republicans. Republicans consistently attributed lower value to each taxon than did Democrats or Independents (Table 2).

Factors Used to Prioritize Species

Political party affiliation had no significant effects on the selection of factors considered most important for species preservation (\(\chi^2 = 21.048, p = 0.4480, 21 \text{ df}\)). All parties considered a species’ apparent ecological importance to be the most important factor contributing to preservation value, followed by rarity, severity of threat, and monetary expense of preservation (Table 3).

Competing and Complementary Values

Political parties showed no significant differences in the value attributed to economic growth and, in general, ecosystem health was valued more highly than economic growth (80.56 vs. 75.40 respectively; \(f = 6.6885, p = 0.0002, 3 \text{ df}\)). When asked to rate the importance of maintaining ecosystem health, however, differences between political parties were significant (\(f = 3.495, p = 0.0155, 3 \text{ df}\)). Both Democrats and Independents attributed higher value to the maintenance of ecosystem health than did Republicans (\(t = 2.4332, p = 0.0153 \text{ and } t = 2.7166, p = 0.0068\), respectively) (Fig. 2). Although differences in value attributed to the maintenance of property rights were not highly significant between groups (\(f = 2.2057, p = 0.0864, 3 \text{ df}\)), pairwise comparisons using Student’s t-test show that

Table 2. Party-Specific Conservation Values for Various Taxa

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Democrat</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>SE</td>
<td>Rank</td>
<td>X</td>
<td>SE</td>
<td>Rank</td>
<td>X</td>
<td>SE</td>
</tr>
<tr>
<td>Plants</td>
<td>75.31</td>
<td>1.87</td>
<td>1</td>
<td>67.96</td>
<td>2.08</td>
<td>3</td>
<td>72.37</td>
<td>2.60</td>
</tr>
<tr>
<td>Birds</td>
<td>73.33</td>
<td>1.64</td>
<td>2</td>
<td>68.81</td>
<td>1.83</td>
<td>2</td>
<td>72.47</td>
<td>2.29</td>
</tr>
<tr>
<td>Mammals</td>
<td>72.46</td>
<td>1.76</td>
<td>3</td>
<td>69.17</td>
<td>1.95</td>
<td>1</td>
<td>73.65</td>
<td>2.44</td>
</tr>
<tr>
<td>Fish</td>
<td>70.83</td>
<td>1.79</td>
<td>4</td>
<td>64.47</td>
<td>1.99</td>
<td>4</td>
<td>71.31</td>
<td>2.48</td>
</tr>
<tr>
<td>Reptiles</td>
<td>61.69</td>
<td>1.96</td>
<td>5</td>
<td>54.48</td>
<td>2.21</td>
<td>5</td>
<td>64.62</td>
<td>2.27</td>
</tr>
<tr>
<td>Amphibians</td>
<td>61.61</td>
<td>1.92</td>
<td>6</td>
<td>53.50</td>
<td>2.14</td>
<td>6</td>
<td>62.15</td>
<td>2.66</td>
</tr>
<tr>
<td>Invertebrates</td>
<td>60.28</td>
<td>2.03</td>
<td>7</td>
<td>50.91</td>
<td>2.25</td>
<td>7</td>
<td>62.34</td>
<td>2.82</td>
</tr>
<tr>
<td>Microorganisms</td>
<td>55.47</td>
<td>2.14</td>
<td>8</td>
<td>44.98</td>
<td>2.39</td>
<td>8</td>
<td>56.06</td>
<td>3.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Politics and the Life Sciences *March 2001*
Republicans placed greater value on the maintenance of property rights than did Democrats ($t = 2.301, p = 0.0217$) or Independents ($t = 2.203, p = 0.0436$), and less value on the conservation of species than did Democrats ($t = 2.188, p = 0.0291$). All parties attributed highest value to the maintenance of resources for future generations. Differences among parties were evident in the valuation of the maintenance of democracy ($f = 7.5895, p < 0.0001, 3 \text{ df}$), with those in the category “Other” placing significantly less emphasis on the maintenance of democracy than the other 3 groups.

General Environmentalism

Democrats and Independents agreed more strongly that humans should submit to the forces of nature than did Republicans ($f = 9.749, p = 0.0018, 2 \text{ df}$), that it is important to feel “in harmony with the forces of nature” ($f = 8.117, p = 0.0045, 2 \text{ df}$), and that “natural resources must be preserved even if people must do without” ($f = 12.266, p = 0.0005, 2 \text{ df}$). Despite these differences in attitude, perception of self as an environmentalist was not significantly different among parties ($f = 2.1944, p = 0.0877, 3 \text{ df}$), and Republicans were no less likely than Democrats or Independents to belong to an environmental organization ($c^2 = 3.92, p = 0.2701$).

Property Rights

Republicans placed greater emphasis on the protection of property rights than did other parties. Republicans were the only group to express neutrality ($x = 50.9$) when asked to rate their level of agreement with the statement “Endangered species protection should not interfere with a landowner’s right to develop property.” All other groups disagreed strongly with the statement ($x = 35.2, 37.9, \text{ and } 35.7$ for Democrats, Independents, and Other respectively), and differences attributable to party affiliation were highly significant ($f = 8.3493, p < 0.0001, 3 \text{ df}$). Republicans had
a lower level of agreement than Democrats or Independents with the statement “Landowners should not have the right to use their property in ways that endanger a species” ($t = 4.15, p = 3.8 \times 10^{-5}; t = 2.9525, p = 0.0033$, respectively); they also showed a significantly higher level of agreement ($x = 64.4$) with the statement “Landowners prevented from developing their property because of endangered species laws should be paid for any lost income by the public,” than Democrats, who were closer to neutral on the subject ($x = 53.9, t = 2.92, p = 0.0036$).

Policies Affecting Species Conservation

Opinions on conservation policy varied in the extent to which they could be attributed to party differences. All parties favored the stabilization of human population growth and the elimination of subsidies for practices that degrade endangered species habitat, and opposed a ban on wildlife harvesting (Table 4). Parties differed, however, on their views toward lowered consumption of resources by humans. When asked whether laws should be passed to “lower the consumption of resources, especially by wealthy individuals,” the majority of Democrats and Independents agreed (54% and 55% respectively). In contrast, only 34% of Republicans agreed with the statement, while 46.2% disagreed. Differences between groups were clearly significant ($c^2 = 40.242, p < 0.0001$).

Endangered Species Act

Party members differed significantly on their stances toward the Endangered Species Act of 1973 ($c^2 = 39.672, p < 0.0001$). Democrats and Independents were highly supportive of the act: 91.9% of Democrats and 90.8% of Independents wanted to see the Endangered Species Act either strengthened or unchanged. Although 72.8% of Republicans either supported the Endangered Species Act in its present form or wanted it strengthened, Republicans expressed more ambivalence toward the act than did Democrats or Independents. Negative views toward the act were held by 27.2% of Republicans, who wanted the act either weakened or revoked (Figure 3).

Table 4. Party-Specific Support for Policies Affecting Species Conservation (Percentages)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Democrat</th>
<th>Republican</th>
<th>Independent</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Subsidies</td>
<td>Support</td>
<td>Oppose</td>
<td>Undecided</td>
<td>Support</td>
</tr>
<tr>
<td></td>
<td>71.03</td>
<td>11.21</td>
<td>17.76</td>
<td>62.76</td>
</tr>
<tr>
<td>Stabilize Growth</td>
<td>64.95</td>
<td>17.76</td>
<td>17.29</td>
<td>54.06</td>
</tr>
<tr>
<td>Lower Consumption</td>
<td>53.95</td>
<td>22.33</td>
<td>23.72</td>
<td>34.17</td>
</tr>
<tr>
<td>Ban Harvesting</td>
<td>8.41</td>
<td>84.11</td>
<td>7.48</td>
<td>3.05</td>
</tr>
</tbody>
</table>
Knowledge

Knowledge levels regarding the causes of species endangerment were roughly the same for identifiers of all parties. All recognized habitat loss due to mining, logging, farming, and other forms of development as the leading cause of species endangerment. Pesticides and other toxic chemicals were erroneously cited as the primary cause of endangerment by 42.0% of Republicans, 33.5% of Democrats, and 27.9% of Independents. The second leading cause of endangerment, invasive species, was seldom cited by respondents as a primary cause of endangerment (Republicans 4.1%, Democrats 0.9%, Independents 0.8%). Harvesting of wildlife, on the other hand, was cited as a primary cause of endangerment by 7.4% of Democrats, 6.7% of Independents, and 5.7% of Republicans, while in reality it is a relatively minor cause of species endangerment in the United States (Czech, Krausman, and Devers, 2000).

Implications of the Nationwide Survey

Our results clearly illuminate a partisan dimension to the American conservation ethic. Republicans place less value on the preservation of species and more value on property rights than do Democrats and Independents. Perhaps this is not surprising; environmental concern in general has long been linked to liberal political ideology (Hayward, 1994; Wall, 1995) and liberal party identification (Koenig, 1975). Meanwhile, anti-environmental movements, such as the “wise use” and property rights movements have been supported by Republicans in general (Ramos, 1995), most notably by Presidents Ronald Reagan and George Bush (Thiele, 1999), a recent Speaker of the House of Representatives (Gingrich et al., 1994), and Don Young, the current Chairman of the House Resources Committee (Czech and Krausman, 2001). The latter said of the endangered Tipton kangaroo rat, “It’s a pest. It’s nothing. It has no value” (Williams, 1996:122). Although Young voted for ESA (as did nearly everyone in Congress), he later asserted that Congress “envisioned trying to protect, you know, pigeons and things like that. We never thought about mussels and ferns and flowers and all these subspecies of squirrels and birds” (Bergman, 1995:54). Ironically, the most environmentally supportive Republican president since the beginning of the twentieth century, and the president who signed ESA—Richard Nixon—left a clouded legacy more like Tammany’s than Theodore Roosevelt’s.

In Congress, there is no Don Young analog to the left on ESA, but Democrats have been the most consistent supporters of ESA since it was introduced to the House by John Dingell of Michigan in 1972 (Yaffee, 1982). Rifkin and Rifkin developed a method for scoring the environmental valence of members of the 101st and 102nd Congresses, referring to strong environmental supporters as “Green.” They found that “the Green profile that emerges is striking. Green elected officials are overwhelmingly Democrats…. Of the thirty-nine members of the House who received A’s on the Green report card all but two are Democrats. On the other hand, of the thirty-seven House members who received F’s, thirty-two are Republicans. The same holds true for the Senate” (1992:288). Their findings do not pertain precisely to the issue of species conservation, however, because “endangered species and biodiversity” was only one component in an analysis that included seven other variables.

Perhaps the more interesting results of our study pertain to similarities among parties. For example, parties differ significantly neither in the value attributed to economic growth nor in the importance of maintaining resources for posterity. It is possible that, as Thiele (1999) posited, many environmentalists (regardless of party) believe that economic growth and environmental protection are integrated goals; that is, that a healthy environment is linked to a growing economy (Thiele, 1999). Such a belief is based upon the correlation of strong environmental programs with large and growing economies, and is fallacious because it ignores the ecological and economic starting points of nations (Rostow, 1990; Czech, 2000b). Furthermore, because natural capital (including soil, water, and wildlife habitat) is not accounted for with national income accounting indices, such as gross domestic product (Hueting, 1991; Jansson et al., 1994), the perceived correlation between economic growth and environmental protection is a spurious one.

While some view the fundamental conflict between economic growth and wildlife conservation as a matter of common sense, Americans generally do not fully comprehend the conflict, having been influenced by a powerful coalition of corporate, academic, and political interests (Daly and Cobb, 1994; Ayres, 1999; Luke, 1999; Czech, 2000b). They place great stock in the neoclassical theory of unlimited economic growth, with 63% believing that there is no limit to economic growth (Madrick, 1995). While the verdict on whether there is an ultimate ceiling for GDP will not soon be settled, what gets lost in the argument is that, either way, GDP expands at the expense of nonhuman species (Fearnside, 1986; Czech, 2000a). In other words, if substitutability of resources, increasing productive efficiency, and expanding human capital indeed produce perpetual economic growth (consistent with neoclassical theory), then nonhuman species will become increasingly endangered. Substitutability allows the natural world to be replaced by an increasingly synthetic world; more efficient technology allows the extraction of increasingly remote and marginal resources; and human capital renders the services of nonhuman species—and therefore the species—expendable in economic terms (Ehrlich et al., 1999).

Our results suggest that the general knowledge of the negative relationship between economic growth and wildlife conservation does not differ among parties, all of
whose members correctly identified habitat-depleting economic activities as the primary cause of species endangerment. Perhaps, then, there is a misunderstanding of what constitutes, or contributes to, economic growth. Americans—largely unaware of the findings of economists, from the physiocratic Francois Quesnay to the neoclassical Colin Clark to the ecological Kenneth Boulding—may erroneously believe that the current “information economy” may grow “from the top up,” rather than as an integrated economy ultimately dependent upon agricultural, extractive, manufacturing, and other species-endangering sectors. In support of a long line of structural and, especially, ecological economists, Czech, Krausman, and Devers (2000) demonstrated how all economic sectors, even services, are associated in the endangerment of species.

Perhaps our most important implication pertains to the ideological foundation of species conservation. Even though Republicans and Democrats value economic growth equally highly, appear equally knowledgeable of the causes of species endangerment, appear equally ignorant about the relationship of economic growth to wildlife conservation (and/or what constitutes economic growth), and are equally likely to identify themselves as environmentalists and belong to environmental organizations, they differ significantly in the value they attribute to species’ preservation and in their support for endangered species protection. These results suggest that the stronger support for species conservation by Democrats may be based less on utilitarian or even ecological perspectives and more upon biocentric (i.e., supporting equality among species) or otherwise philosophical perspectives. In our opinion, this does not bode well for species conservation, because neither party seems to base its collective decision on the merits of species conservation in a real understanding of what species conservation entails. Biocentrism will not conserve species unless accompanied by corrective macroeconomic policy, namely, the establishment of a steady state economy proposed in an earlier day by John Stuart Mill and, many endangered species later, by Herman Daly and other ecological economists (Daly and Cobb, 1994; Czech, 2000b). A steady state economy is characterized by non-declining natural capital stocks, including wildlife habitats.

A distasteful but alternative interpretation of the propensity of Americans to value economic growth and yet classify themselves as environmentalists (and, for Democrats, to value species highly) is a hypocritical form of greed; Americans may want to have their wildlife and consume its habitat, too. We doubt that hypocrisy or greed are as important as the ignorance of ecological economics. On the other hand, “ignorance is bliss,” and greed may subtly dissuade Americans from proactively acquiring knowledge and facing facts.

The implications for socially conscious academics are clear: instruct students in the fundamental conflict between economic growth and ecosystem health so that, as citizens of any party, they may approach conservation politics and policy with the knowledge required to be effective. The implications for politicians and other policymakers are less clear and vary depending on the perspective of democracy employed. For the politician who emphasizes principles of equality (including the equality of posterity) and freedom of information, the opportunity of public office may be used to educate constituents on the principles of ecological economics. For the politician who narrowly applies the principle of representation, little will be done for conservation beyond that called for by voters; Democrats will generally support species conservation, Republicans will generally detract from their efforts, and all will forge ahead in the pursuit of economic growth. However, considering that resources for posterity are valued more highly than economic growth, property rights, and democracy itself, the politician with a holistic perspective of representation may work toward the establishment of a steady state economy even while serving a pro-growth constituency.

Acknowledgments

We thank Helen Ingram and Paul Krausman for guidance and support, and Amy Roach of Survey Sampling, Inc. for technical assistance.

References

